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Abstract

New-items play a crucial role in recommender systems (RSs) for de-
livering fresh and engaging user experiences. However, traditional
methods struggle to effectively recommend new-items due to their
short exposure time and limited interaction records, especially in
dynamic recommender systems (DRSs) where new-items get con-

tinuously introduced and users’ preferences evolve over time.
This leads to significant unfairness towards new-items, which could
accumulate over the successive model updates, ultimately com-
promising the stability of the entire system. Therefore, we propose
FairAgent, a reinforcement learning (RL)-based new-item fairness
enhancement framework specifically designed for DRSs. It lever-
ages knowledge distillation to extract collaborative signals from
traditional models, retaining strong recommendation capabilities
for old-items. In addition, FairAgent introduces a novel reward
mechanism for recommendation tailored to the characteristics of
DRSs, which consists of three components: 1) a new-item explo-

ration reward to promote the exposure of dynamically introduced
new-items, 2) a fairness reward to adapt to users’ personalized
fairness requirements for new-items, and 3) an accuracy reward

which leverages users’ dynamic feedback to enhance recommen-
dation accuracy. Extensive experiments on three public datasets
and backbone models demonstrate the superior performance of
FairAgent. The results present that FairAgent can effectively
boost new-item exposure, achieve personalized new-item fairness,
while maintaining high recommendation accuracy.

CCS Concepts

• Information systems→ Recommender systems.
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1 Introduction

Recommender systems (RSs) learn user preferences based on histor-
ical behavior, continuously providing high-quality items to users [6,
32]. These systems are widely used across various domains, such
as e-commerce [31], job recommendation [4, 5], and short-video
services [9], providing immense convenience to users and driving
significant benefits for platforms and item providers.

In real-world scenarios, new-items are continuously introduced
over time, user preferences for these items evolve dynamically,
and RSs need to continuously collect user interactions for updates.
However, in this dynamic recommender systems (DRSs), new-items
suffer from limited exposure time, making it difficult to gather suf-
ficient interaction data. This results in traditional recommendation
models failing to effectively learn representations for them, lead-
ing to a bias toward over-recommending old-items [16, 40] and
exhibiting unfairness toward new-items. Such unfairness is further
amplified through the dynamic feedback loops of DRSs [35], ulti-
mately compromising the long-term stability of the entire system.

Existing studies have recognized the importance of addressing
the issue of new-item fairness [10, 43]. However, these studies fail
to account for the dynamic nature of DRSs, leaving the challenge
of addressing new-item fairness in DRSs unresolved. 1) First, the
continuous introduction of new-items in DRSs requires optimization

objectives to adapt over time. Existing methods are primarily de-
signed for static scenarios [10, 43], meaning they lack the flexibility
to adjust to dynamic changes in item pools and user interactions.
This inability to accommodate evolving conditions limits their effec-
tiveness in achieving sustained improvements in new-item fairness.
2) Second, users’ personalized preferences for new-items evolve over

time. Existing studies on item fairness neglect users’ personalized
preferences for new-items and also fail to account for the dynamic
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evolution of these preferences in DRSs. 3) Third, users provide on-
going interaction feedback that directly influences subsequent model

updates. To maintain recommendation accuracy, it is essential to
dynamically incorporate this feedback into model. Although some
studies have addressed fairness issues in DRSs [18], such as miti-
gating popularity bias [33, 41] and ensuring user-side fairness [36],
they overlook the critical issue of fairness for new-items. This as-
pect is essential for providing fresh user experiences and ensuring
the long-term stability of DRSs. Consequently, the issue of new-item
fairness in DRSs remains an open research problem that requires
further exploration.

Therefore, we propose FairAgent, a reinforcement learning
(RL)-based new-item fairness enhancement framework to tackle
new-item fairness challenges in DRSs. Inspired by the idea of knowl-
edge distillation (KD) [15], FairAgent inherit pre-trained embed-
dings from traditional recommendation models, preserving their
strong ability to recommend old-items. On this basis, FairAgent
specifically designs novel reward strategies tailored for recommend-
ing new-items in DRSs. To address the continuous introduction
of new-items in DRSs, FairAgent incorporates a new-item ex-

ploration reward to consistently promote the exposure of newly
introduced items, tackling the challenge of limited interaction data
for new-items. To adapt to the dynamic changes in users’ personal-
ized preferences for new-items, FairAgent introduces a fairness
reward that dynamically adjusts strategies to enhance fairness, en-
suring recommendations align with users’ evolving needs. Notably,
this reward enables FairAgent to cater to personalized fairness
requirements across different users, providing a more tailored and
user-centric recommendation. Finally, to effectively leverage ongo-
ing user interaction feedback, FairAgent introduces an accuracy

reward designed to maintain recommendation accuracy by ensur-
ing users are presented with items that align with their changing
interests. This addresses the challenge of balancing fairness with ac-
curacy in DRSs. By integrating these designs, FairAgent effectively
addresses the key challenges of DRSs, which significantly increases
new-item exposure, enhances new-item fairness by considering
users’ personalized preferences, and maintains high-accuracy rec-
ommendations for both new and old items. Moreover, FairAgent
can integrate with any existing recommendation models to enhance
new-item fairness, offering significant practical value.

In summary, our work makes the following contributions:

• We are the first to introduce the research problem of addressing
new-item fairness in DRSs, emphasizing the the critical role of
new-items in maintaining the stability of DRSs.
• Wepropose a dynamic RL-based new-item fairness enhancement
framework that addresses three key challenges in DRSs: the
continuous introduction of new-items, the dynamic evolution
of user preferences, and the need for regular model updates.
By tackling these challenges, FairAgent effectively mitigates
unfairness accumulation within feedback loops of DRSs.
• We conducted extensive experiments on three public datasets
and backbone models. The results demonstrate that FairAgent
can effectively increase new-item exposure, enhance new-item
fairness while maintaining high recommendation accuracy.

• We have released the code1, establishing FairAgent as an open-
source tool that can be integrated into any existing recommen-
dation models.

2 Related work

New-item Fairness. Ensuring fairness for new-items without prior
interaction is crucial in DRSs to enable equal opportunities for all
item providers [10, 43]. The work [43] examines fairness in cold-
start scenarios, formalizing it with equal opportunity and Rawlsian
Max-Min fairness. It proposes a post-processing framework with
two models to enhance fairness among new-items but overlooks
unfairness between new and old items. This work [10] introduces
a new-item exposure fairness definition considering item entry-
time and presents a framework to address new-item fairness in
RSs. Another approach tackles new-item fairness by addressing
unfairness caused by varying interaction counts across items, with
new-items being least interacted with. For instance, the inverse
propensity scoring method [25] adjusted the training loss by re-
weighting interactions according to the inverse of item popularity.
Causal intervention methods [29, 37] aimed to mitigate the negative
effects of popularity on prediction scores, while regularization-
based techniques [23, 42] incorporated fairness constraints into the
training loss to balance predictive scores across items. However, all
of these work overlook the accumulation of new-item unfairness
in dynamic feedback loops of DRSs.
Cold-start Recommender Systems. The cold-start recommen-
dation problem aims to improve a system’s ability to deliver rele-
vant recommendations for new users or items. For new-item cold-
start scenarios, existing research primarily follows two technical
paradigms. The first leverages auxiliary item contents, such as
category labels, textual descriptions, to reduce reliance on ID em-
beddings and instead utilize richer semantic features [2, 12, 28].
The second exploits graph-based structures [7, 14, 30], including
user–item interaction graphs and knowledge graphs, to uncover
high-order relational patterns that enhance recommendation qual-
ity for new-items. In this work, we also address the challenge of
recommending new-items, with a particular focus on a novel and
practical dimension—ensuring fairness in the exposure competition
between new and existing items when user attention is limited. To
support our investigation, we employ state-of-the-art cold-start
method [12] as the backbone model.
RL-based Recommender Systems. Reinforcement learning has
been extensively studied and applied in RSs, offering a powerful
framework to optimize long-term user engagement and system
objectives [3, 34]. The work [38] proposes a RL-based RS that opti-
mizes strategies through continuous user interaction, effectively
incorporating both positive and negative feedback. The work [39]
introduces a Deep Q-Learning framework for news recommen-
dation, modeling future rewards to address dynamic user prefer-
ences and news features. And the work [15] proposes a top-aware
recommender distillation framework that uses RL to refine rec-
ommendation rankings, prioritizing top positions to improve user
engagement. Inspired by the work [15], we also leverage KD to
inherit traditional model’s well-learned information about users
and old-items. The aforementioned works confirm the effectiveness

1https://github.com/Grey-z/FairAgent

https://github.com/Grey-z/FairAgent
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Figure 1: Dynamic recommender system.

of applying RL in RSs. In this work, we leverage RL techniques to
enhance new-item fairness.

3 Preliminaries

As illustrated in Fig 1, we begin with a concise overview of the
basic process of dynamic recommendation scenarios which involves
multiple temporal stages [18, 36]. Suppose the DRS starts from 𝑇0,
where there are a set of usersU and an item set V𝑇0 . We collect
the user-item interaction data before 𝑇0 from all users, denoted as
D𝑇0 = {(𝑢, 𝑣) |𝑢 ∈ U, 𝑣 ∈ V𝑇0 }, to train the initial recommendation
model,M𝑇0 .

In each of the following recommendation stage𝑇𝑚 , a set of new-
items V𝑛

𝑇𝑚
is introduced into the DRS2. The updated item set is

expressed as:
V𝑇𝑚 = V𝑇𝑚−1 ∪V

𝑛
𝑇𝑚
,𝑚 = 1, 2, . . . , 𝑀.

M𝑇𝑚 takes user-item pairs (𝑢, 𝑣), where 𝑢 ∈ U, 𝑣 ∈ V𝑇𝑚 , as input
to predict user preference probability 𝑦𝑢𝑣 = e𝑚𝑢 · e𝑚𝑣 , where e𝑚𝑢 and
e𝑚𝑣 are the embedding vectors learned byM𝑇𝑚 . A higher value of
𝑦𝑢𝑣 signifies a stronger preference of user 𝑢 for the item 𝑣 . We con-
sider the top-𝐾 recommendation task, where the 𝐾 items with the
highest preference probability are included in the recommendation
list, denoted as 𝐿𝑢 , which is then presented to user 𝑢.

After receiving recommendations, users would typically interact
with certain displayed items based on their preferences, such as
clicking, purchasing, or adding them to a wish-list. Notably, affected
by the position bias, items ranked higher on the list tend to receive
more exposure, thereby is more probable to get user interactions.
We define 𝑦∗𝑢𝑣 as the true preference of user 𝑢 for item 𝑣 , with
𝑦∗𝑢𝑣 = 1 indicating he/she is willing to interact with the item after
observing it and 𝑦∗𝑢𝑣 = 0 indicating otherwise. Formally, we model
user interaction behavior as follows [1, 18]:

�̂�𝑢𝑣 =

{
𝑦∗𝑢𝑣 · 𝑃𝑜𝑏𝑒 (𝑟𝑢𝑣 |𝑣 ∈ 𝐿𝑢 ) if 𝑟𝑢𝑣 ≤ 𝐾

0 otherwise . (1)

The observe probability 𝑃𝑜𝑏𝑒 (𝑟𝑢𝑣) that represents the probability
of 𝑢 observing the item 𝑣 ranked at position 𝑟𝑢𝑣 , is modeled as:

𝑝 (𝑟𝑢𝑣 ) ∼ Bernoulli
(

1
log2 (𝑟𝑢𝑣 + 1)

)
. (2)

Noted that the observe probability decreases logarithmically with
the value of the rank position.

At the start of the next recommendation stage 𝑇𝑚+1, user inter-
action data from the previous stage, D𝑇𝑚 = {(𝑢, 𝑣,𝑦𝑢𝑣) |𝑢 ∈ U, 𝑣 ∈
V𝑇𝑚 }, is collected to update themodel parameters:M𝑇𝑚 →M𝑇𝑚+1 .
2In this work, we focus on fairness from the perspective of new-items. To avoid
potential adverse effects, we temporarily exclude the introduction of new users.

5
4
3
2
1

Te
st

 S
ta

ge

0.15

0.17

0.19

0.16

0.18 0.17 0.16 0.18

0.18

0.20

0.18

(a) Ground-truth

0.34

0.34

0.34

0.35

0.37

0.29

0.29

0.29

0.30

0.31

0.20

0.20

0.20

0.19

0.19

(b) MF

0.0 0.2 0.4 0.6 0.8 1.0
5
4
3
2
1

Te
st

 S
ta

ge

0.30

0.30

0.31

0.32

0.34

0.26

0.26

0.27

0.29

0.30

0.20

0.20

0.20

0.20

0.19

(c) LightGCN

0.0 0.2 0.4 0.6 0.8 1.0
0.33

0.34

0.33

0.34

0.29

0.28

0.29

0.28

0.29

0.25

0.16

0.17

0.17

0.17

0.15 0.21

(d) ALDI

tr
1

tr
2

tr
3

tr
4

tr
5

te
1

te
2

te
3

te
4

te
5

Figure 2: Proportion of items from different sets appearing

in the ground-truth and recommendation sets generated by

various backbone models.

The updated model will generate the recommendation lists for users
at the next recommendation stage. Notably, only items appearing
in the top-𝐾 recommendation list of a user have the opportunity to
receive feedback data, which consequently influences the direction
of model updates in the subsequent stages. This highlights the need
to ensure item (exposure) fairness in a DRS, as unfairness may
accumulate over stages and eventually lead to system instability,
as we will analyze in the following.

4 New-item Fairness Concern in DRSs

In this section, we perform a series of data analyses to reveal expo-
sure fairness concerns of new-items in the existing recommendation
models, such as collaborative filtering based models like Matrix
Factorization (MF) [22], LightGCN [11] and cold-start based models
like ALDI [12] on the Steam dataset [19]. We begin by simulating
multiple recommendation stages in DRSs. We split the dataset into
training and testing sets in a 1:1 ratio. The training set is then used
to train the backbone model, while the testing set is divided into
five subsets to be used in the five sequential stages to simulate a
DRS. Items are grouped into ten sets based on their appearance time.
Item sets (V𝑡𝑟1 −V

𝑡𝑟
5 ) are included in the training set, while item

sets (V𝑡𝑒1 −V
𝑡𝑒
5 ) are introduced into the system at the start of their

corresponding testing stage. For instance, items in V𝑡𝑒2 only be-
come available when testing stage 2 begins and remains accessible
in the subsequent stages. We train the backbone model follows the
standard procedures outlined in the public library [26, 27]. Detailed
experimental settings are provided in Section 6.

The findings are presented in Fig 2. In each subfigure, the y-axis
shows the results across different recommendation stages, while
the x-axis represents different item sets. Specifically, red (or orange)
shades represent old-items from the training sets, while blue shades
indicate new-items from each testing set. The numbers (or lengths)
of the bars reflects the proportion of each item set in the ground
truth (Fig 2(a)) or in the recommendation sets generated by various
backbone models (Fig 2(b)-(d)).

From Fig 2(a), we observe that new-items introduced in each
stage consistently attract a notable share of users in the follow-
ing stages. By test stage 5, they collectively accounted for more
market share ( 51% ) than the old-items. We could expect that over
time new-items may gradually replace more and more old ones
in user interaction, which actually complies with lots of applica-
tions in reality such as in news/short video/e-commerce platform.
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This implies that: In general, users have increasing interest in

exploring new-items over time.

Comparing Fig 2(b)-(d) to Fig 2(a), we observe that in each stage,
recommendations of MF, LightGCN and ALDI all deviate from what
users actually prefer (i.e. proportion of items distributes differently),
and that deviation gets worse along with the stages. While under
ALDI, new-items can take a bit of market share (though still far
from the ground-truth), there is barely chance for them under MF
and LightGCN. The primary cause of this phenomenon is the lack
of user interaction data for new-items. Models like MF and Light-
GCN struggle to capture sufficient information about new-items,
resulting in a bias toward overexposing old-items with more inter-
actions.While cold-start models like ALDI utilize additional content
information to improve the representation of new-items, their expo-
sure remains highly unfair compared to old-items. This unfairness
is further amplified by the dynamic feedback loops in DRSs, ulti-
mately leaving new-items with minimal exposure. This highlights
a critical issue: under existing RS models, new-items are at a

significant disadvantage when competing with old-items for

limited exposure, failing to align with actual user needs. It

underscores the importance of improving new-item exposure

and fairness to enhance the stability and sustainability of

dynamic recommender systems.

5 The Framework of FairAgent

Aiming for improving the exposure fairness of new-items, in this
section, we propose a RL-based new-item fairness enhancement
framework, FairAgent. In this section, we first introduce the rel-
evant fairness definitions and evaluation metrics related to fair
exposure of new-items. Next, we elaborate on the design of the
proposed FairAgent framework, and how it explores new-items
and maintains fairness between new and old items.

5.1 User-Level New-Item Exposure Fairness

In DRSs, item providers are primarily concerned with whether their
items are effectively exposed to users, as this is a prerequisite for
potential user interactions. We define exposure resources that item
𝑣 receives in recommendation list 𝐿𝑢 during stage 𝑇𝑚 as [18]:

𝐸𝑥𝑝𝑚 (𝐿𝑢 , 𝑣) =
I (𝑣 ∈ 𝐿𝑢 )

log2 (𝑟𝑢𝑣 + 1)
, (3)

where function I(𝑥) serves as an indicator, returning 1 if 𝑥 is true
and 0 otherwise. 𝑟𝑢𝑣 denotes the rank position of item 𝑣 within 𝐿𝑢 .
Items ranked higher in the list receive more exposure and are more
likely to attract user interactions.

We have observed in Section 4 that with new-items entering a
system over time, proportion of user preference of old and new
items changes dynamically. As shown in Fig 2, typically for new-
items, those that entered more recently tend to attract more users,
and for old-items, those relatively older ones attract more users.
This enlightens us that to investigate whether exposure resources
are fair between old and new items, their entry time should be
considered. There exists an time-based item fairness metric (TGF)
proposed in [10] that takes this into account. It weights items based
on their entry time in measuring the exposure disparity between

old and new items.

𝑇𝐺𝐹 (𝐿𝑢 ) =
1
|V𝑜𝑢 |

|V𝑜𝑢 |∑︁
𝑝=1

𝑤𝑜𝑝 · 𝐸𝑥𝑝𝑚 (𝐿𝑢 , 𝑣𝑜𝑝 ) −
1
|V𝑛𝑢 |

|V𝑛𝑢 |∑︁
𝑞=1

𝑤𝑛𝑞 · 𝐸𝑥𝑝𝑚 (𝐿𝑢 , 𝑣𝑛𝑞 ),

(4)

𝑤𝑜𝑝 = |V𝑜𝑢 | + 1 − 𝑝, 𝑤𝑛𝑞 = 1 + (𝑞 − 1) · |V
𝑜
𝑢 | − 1

|V𝑛𝑢 | − 1
, (5)

where V𝑜𝑢 and V𝑛𝑢 represent the sets of old and new items, re-
spectively, within 𝐿𝑢 at stage 𝑇𝑚 . Items are ordered in descending
sequence based on their entry time into the DRS. Older items in
V𝑜𝑢 with smaller indices 𝑝 are assigned larger weights𝑤𝑜𝑝 consid-
ering their accumulated larger user base and entitlement to higher
exposure resources. Newer items inV𝑛𝑢 with larger indices 𝑞 are
assigned larger weights𝑤𝑛𝑞 to make up for their disadvantages in
collecting interactions.

We want to follow the idea of TGF since it aligns with our obser-
vations, but there is a problem. Taking the average over all users,
TGF cannot account for the personalized preferences for new and
old items, which could vary between different users. To address this
limitation, we propose a user-level personalized fairness metric:

Definition 1. User-level personalized New-item Fairness (UNF).

For user 𝑢 ∈ U, let 𝐻𝑢 denote his/her historical interaction list,

while 𝐿𝑢 still denotes recommendation list the user obtained. UNF is

defined as the divergence between the TGF calculated by recommen-

dation results and that of user’s historical interactions.

𝑈𝑁𝐹 =
1
|U |

∑︁
𝑢∈U
[TGF(𝐿𝑢 ) − TGF(𝐻𝑢 ) ]2 . (6)

The value of TGF(𝐿𝑢 ) reflects the exposure distribution of new and

old items in the recommendation results, while TGF(𝐻𝑢 ) represents
the user’s historical preference for that, computed based on their past

interactions.

A smaller value of UNF indicates that the recommendation re-
sults align more closely with the user’s preference for new and old
items, making the system fairer at the individual user level.

5.2 Fairness Enhancement with RL Framework

In this section we present the design details of our RL-based new-
item fairness enhancement framework, FairAgent. As shown in
Fig 3, FairAgent initializes from a backbone model, selects the
candidate items based on user interaction and a carefully designed
reward mechanism, and then produces a fairer top-𝐾 recommen-
dation list. A core characteristic of FairAgent lies in its design
of the reward mechanism, which offers three significant advan-
tages, 1) appropriate new-item recommendation rate and 2) fairer
exposure of new-items and 3) high recommendation accuracy. The
implementation details will be elaborated in the following sections.

5.2.1 Setting of RL-based DRS. Following the paradigm of RL-
based work [15, 39], we utilize the following settings in FairAgent:

• State s𝑡𝑢 refers to a vector that captures the historical preferences
of a specific user 𝑢 at step 𝑡 . It comprises of the embeddings of
the users along with most recent 𝑁 items they have interacted
with, represented as s𝑡𝑢 = [e𝑢 , e𝑣1 , e𝑣2 , · · · , e𝑣𝑁 ].
• Action a𝑡𝑢 refers to the item selected for user 𝑢 at step 𝑡 from the
action space A𝑡𝑢 .
• Reward 𝑟𝑡𝑢 represents the benefit obtained by selecting action
a𝑡𝑢 given the state s𝑡𝑢 .
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Figure 3: Our proposed RL-based new-item fairness enhancement framework, FairAgent.

Deep Q-Network (DQN) [17] is a RL algorithm that integrates
Q-learning with deep neural networks, enabling it to approximate
the Q-value function for high-dimensional state-action spaces. In
DRSs, DQN learns the optimal policy 𝜋𝜃 (s𝑡𝑢 , a𝑡𝑢 ) for recommenda-
tions by modeling user-item interactions as a Markov Decision
Process (MDP). The Q-value, 𝑄 (s𝑡𝑢 , a𝑡𝑢 ), represents the expected cu-
mulative reward of selecting an item 𝑣 (action a𝑡𝑢 ) given the user’s
preferences (state s𝑡𝑢 ), guiding the system to recommend items that
maximize user satisfaction or system objectives.

5.2.2 Detailed Step to Construct FairAgent. Based on the afore-
mentioned settings, we now provide a detailed explanation of
the steps involved to construct FairAgent, as illustrated in Al-
gorithm 1.

(1) Initialize Model (lines 1-3): FairAgent employs DQN, de-
noted as Q𝜃 , as its core component to predict user preferences
for items. To accelerate convergence, DQN is initialized with pre-
trained embeddings eU and eV𝑇0 from the backbone modelM𝑇0
This enables DQN to retain the backbone model’s strong recom-
mendation capability for old-items and build upon it to enhance
recommendations for new-items.

(2) Construct initial state and action space (lines 5-11): We
combine the embeddings of the user and the 𝑁 items he/she most
recently interacted with during the previous recommendation stage
to construct the initial state, s0𝑢 . For the construction of action
space A0

𝑢 , we introduced a preference-aware sampling strategy
to dynamically adjust the ratio of old and new items. Specifically,
we define a Bernoulli distribution over the binary variable "item
type" (old or new), parameterized by the ratio of new-items in
user’s historical interactions 𝑝𝑛𝑒𝑤 . Each item added to the action
space is sampled from this distribution: with probability 𝑝𝑛𝑒𝑤 it is
drawn from the set of new-items, and with probability (1 − 𝑝𝑛𝑒𝑤)
it is drawn from the set of old-items. For instance, if the estimated
probability of the user preferring a new-item is 𝑃new = 0.4, the
distribution is configured to yield an old-to-new item ratio of 6:4.
For the selection within the new and old item sets, we adopt the
same greedy search strategy: select the item with the highest score
remaining in the item set, where the score is calculated from the
pre-trained backbone models. By repeating this process for 𝐾 steps,
we construct a fixed-length initial action space A0

𝑢 .

Algorithm 1: Training Process of FairAgent at stage 𝑇𝑚
Input: D𝑇𝑚 ,M𝑇𝑚 , V𝑇𝑚 , U, 𝐻U
Output: Updated model Q𝜃 , Q𝜃 ′ , 𝐿𝑢

1 if𝑚 == 0 then
2 eU , eV𝑇0 ← M𝑇0 ; // Get pre-trained embeddings

3 Q𝜃 , Q𝜃 ′ = Initialize(eU , eV𝑇0 ) ;
4 for each 𝑢 ∈ U do

5 s0𝑢 = [e𝑢 , e𝑣1 , e𝑣2 , · · · , e𝑣𝑁 ] ;
6 𝑃𝑛𝑒𝑤 = GetPreference(𝑢,𝐻𝑢 ) ;
7 while 𝑙𝑒𝑛 (A0

𝑢 ) < 𝑁𝑎𝑐𝑡 do

8 if I(𝑥 = 1 |𝑥 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑃𝑛𝑒𝑤 ) ) then
9 A0

𝑢 ← Sample(V𝑛
𝑇𝑚
) ; // Sample a new-item.

10 else

11 A0
𝑢 ← Sample(V𝑇𝑚−1 ) ; // Sample an old-item.

12 𝐿0𝑢 ← ∅ ;
13 for 𝑡 ← 1 to 𝐾 do

14 if train == True and I(𝑥 = 1 |𝑥 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜀 ) ) then
15 a𝑡𝑢 = Random(A𝑡𝑢 ) ; // Choose action randomly

16 else

17 a𝑡𝑢 = ChooseAction(s𝑡𝑢 ,A𝑡𝑢 , Q𝜃 ) ;
18 𝐿𝑡𝑢 ← 𝐿𝑡−1𝑢 ∪ a𝑡𝑢 (𝑣) ;
19 𝑟𝑡𝑢 = GetReward(s𝑡𝑢 , a𝑡𝑢 ,V𝑛𝑇𝑚 ) ;
20 A𝑡𝑢 = Update(V𝑇𝑚 ) ;
21 if a𝑡𝑢 returns positive feedback then

22 s𝑡+1𝑢 = UpdateState(a𝑡𝑢 , s𝑡𝑢 ) ; // Update state

23 else

24 s𝑡+1𝑢 = s𝑡𝑢 ;
25 Dbuffer ← (s𝑡𝑢 , a𝑡𝑢 , 𝑟𝑡𝑢 , s𝑡+1𝑢 ) ; // Memory mechanism

26 if len(Dbuffer ) > 𝑁mem then

27 Q𝜃 ′ = Train(Dbuffer ) ; // Update parameters

28 Q𝜃 ′ = UpdateNetwork(Q𝜃 ) ;
// Update target network every five iterations

29 𝐿𝑢 ← 𝐿𝐾𝑢 ;
30 return Q𝜃 , Q𝜃 ′ , 𝐿𝑢 ;

(3) Choose action (lines 14-17): At each step 𝑡 , FairAgent
takes an action a𝑡𝑢 (i.e., selects an item 𝑣 to user 𝑢) from action
space A𝑡𝑢 based on the current user state s𝑡𝑢 . During training, we
use a strategy combined with 𝜀-greedy exploration. Specifically,
with a probability of 1 − 𝜀, the model selects the item with the
highest Q-value from the action space, while with a probability
of 𝜀, it randomly selects an item to encourage exploration. This
approach balances exploitation and exploration, allowing the model
to avoid local optima and improve its generalization capabilities.
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(4) Calculate reward (lines 18-19): After taking an action, the
selected item 𝑣 is added to the recommendation list 𝐿𝑢 . The reward
is subsequently calculated based on the updated 𝐿𝑡𝑢 at step 𝑡 .

(5) Update action space and state (lines 20-24): After step 𝑡
completed, both the action space A𝑡𝑢 and the state s𝑡𝑢 need to be
updated for the next step 𝑡 + 1. For the action space, the selected
item 𝑣 is removed fromA𝑡𝑢 , and another item is sampled and added
into A𝑡+1𝑢 , ensuring the action space size remains constant. If the
selected item 𝑣 receives user’s positive feedback, i.e., 𝑦𝑢𝑣 = 1, the
state is updated in a similar manner. The earliest interacted item
in the s𝑡𝑢 is removed, and e𝑣 is added to the s𝑡+1𝑢 . If no positive
feedback is received, the state s𝑡+1𝑢 remains the same as s𝑡𝑢 .

(6)Update DQN (lines 25-28) Inspired by the existing works [15,
20, 24], we utilize two key techniques to improve stability and per-
formance of DQN, including: 1) Experience Replay. A buffer is used
to store past experiences (s𝑡𝑢 , a𝑡𝑢 , 𝑟𝑡𝑢 , s𝑡+1𝑢 ), which are sampled ran-
domly during training to break the correlation between consecutive
updates. 2) Target Network. A separate target network Q𝜃 ′ is main-
tained and periodically updated to stabilize the Q-value estimates,
preventing rapid oscillations during training. In FairAgent, DQN
is adapted to model user decision-making processes and optimize
the ranking of items based on a reward mechanism, ensuring ac-
curate and fair recommendations. Specifically, the parameters 𝜃 of
DQN are trained using the following loss function:

L𝜃 = Es𝑡𝑢 ,a
𝑡
𝑢 ,𝑟

𝑡
𝑢 ,s
𝑡+1
𝑢

[(
𝑄target − 𝑄

(
s𝑡𝑢 , a

𝑡
𝑢 ;𝜃

) )2]
, (7)

where 𝑄 (s𝑡𝑢 , s𝑡𝑢 ) represents the Q-value for the current state-action
pair, 𝑄target denotes the target Q-value. For each training step, the
target Q-value is defined as:

𝑄target = Es𝑡+1𝑢

[
𝑟𝑡𝑢 + 𝜆max

a𝑡+1𝑢

𝑄 (s𝑡+1𝑢 , a𝑡+1𝑢 ;𝜃 ′ ) | s𝑡𝑢 , a𝑡𝑢

]
, (8)

where 𝜃 ′ indicates the parameters of the target network, which are
periodically updated from the main Q-network, such as in every 5
iterations. The constant 𝜆, ranging between 0 and 1, determines the
balance between current and future rewards. FairAgent updates
the recommendation policy 𝜋𝜃 (s𝑡𝑢 , a𝑡𝑢 ) to find out the optimal policy
parameter 𝜃 that can maximize the expected cumulative rewards.

5.2.3 Reward Mechanism. As previously described, FairAgent
employs a reward mechanism to generate the recommendation
list for all users. The objective is to produce a refined list that
satisfies the following three key properties: 1) Appropriate new-
item recommendation rate. The continuously introduced new-items
receive sufficient exposure to meet users’ needs. 2) Fair exposure
allocation for new and old items. Exposure resources are distributed
fairly between new and old items, aligning with users’ preferences
for new-items. 3) High accuracy. The recommended items closely
reflect users’ true preferences for both new and old items.

The three rewards below are designed to guide model update to
achieve the above properties respectively.

New-item exploration reward (𝑅𝑛𝑒𝑤 ) aims to encourage the
exploration of continuously introduced new-items, thus improving
the exposure rate of new-items and ensuring sustainability of the
whole DRS.

𝑅𝑛𝑒𝑤 = 𝛾 · I(𝑣 ∈ V𝑛𝑇𝑚 ) + (1 − 𝛾 ) · I(𝑣 ∈ V
𝑛
𝑇𝑚
) · I(�̂�𝑢𝑣 = 1) (9)

We use parameter𝛾 to control the distribution of reward assigned to
recommending new-items that have received user positive feedback
and that have not.

Fairness reward (𝑅𝑓 𝑎𝑖𝑟 ) aims to adjust the distribution of new
and old items in the recommendation list to align with users’ evolv-
ing preferences for them, thereby achieving personalized new-item
fairness. Let

𝑈𝑁𝐹 𝑡𝑢 =
��𝑇𝐺𝐹 (𝐿𝑡𝑢 ) − 𝑇𝐺𝐹 (𝐻𝑢 ) �� ,

𝑅𝑓 𝑎𝑖𝑟 =
2 · tanh(𝑈𝑁𝐹 𝑡𝑢 −𝑈𝑁𝐹 𝑡+1𝑢 )

1 + tanh(2) ,
(10)

where 𝐿𝑡𝑢 denotes the generated recommendation list at step 𝑡 ,
while 𝐻𝑢 represents the user’s historical interaction list, which
reflects their historical preferences for new-items. The fairness
reward 𝑅𝑓 𝑎𝑖𝑟 ranges between (−1, 1), taking a positive value when
𝑇𝐺𝐹 (𝐿𝑢 ) aligns with 𝑇𝐺𝐹 (𝐻𝑢 ) and a negative value otherwise.
This reward is designed to optimize the recommendation list to
better align with the user’s true preferences for new-items.

Accuracy reward (𝑅𝑎𝑐𝑐 ) leverages ongoing user interaction
feedback, dynamically adjusting to ensure the system adapts to
evolving preferences and effectively utilizes this feedback to en-
hance recommendation accuracy over time.

𝑅𝑎𝑐𝑐 =
I(�̂�𝑢𝑣 = 1)

log2 (𝑟𝑢𝑣 + 1)
(11)

where 𝑦𝑢𝑣 = 1 denotes a positive user feedback to item 𝑣 .
Taking accuracy as the basic goal, new-item fairness and explo-

ration as the additional ones, we define the total reward as:
𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑎𝑐𝑐 + 𝛼𝑅𝑓 𝑎𝑖𝑟 + 𝛽𝑅𝑛𝑒𝑤 , (12)

where 𝛼 and 𝛽 regulate the influence of 𝑅𝑓 𝑎𝑖𝑟 and 𝑅𝑛𝑒𝑤 respectively.

6 Experiments

In this section, we conduct extensive experiments on three pub-
licly available datasets and backbone models. By addressing the
following three research questions consecutively, we demonstrate
the superior performance of FairAgent in improving exposure
rate of new-items, achieving new-item fairness while aligning with
user’s personalized preference for new-items and maintaining high
recommendation accuracy.
RQ1: Compared to state-of-the-art (SOTA) baselines, can FairA-
gentmore effectively improve exposure rate of new-items, address
unfairness between new and old items, while maintaining high
recommendation accuracy?
RQ2: Can FairAgent keep up with user’s personalized dynamic
preferences for old and new items in DRSs?
RQ3: How effective are the different reward components in the
design of FairAgent?

Datasets. To be align with real-world situations, we selected
three publicly available datasets to construct varying DRS scenar-
ios. Each dataset reflects distinct user behavior patterns. KuaiRec-
Small [8] is a dense dataset collected from the Kuaishou platform,
containing user interactions with short videos. In each stage, numer-
ous new-items enter the DRS, and user interest shift towards these
items rapidly.KuaiRec-Large [8] is a larger version of the previous
dataset. This dataset features a DRS with relatively smoother ex-
pansion of item set and slower shifts of user interests. For these two
datasets, we filter interactions where users’ watch ratio is greater
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Figure 4: Dynamic changes in HR and TGF metrics across 5

test stages for different methods using the MF backbone.

than 1.0 as positive samples. Steam [19] is a game dataset con-
taining user interaction data from the Steam gaming platform. It
encompasses a larger pool of users and items, with relatively stable
item set expansion and more consistent changes in user interests.
To create a DRS setting, we split all interaction data into training
and test sets at a 1:1 ratio in chronological order. We train the back-
bone model on the entire training set, and utilize the last 20% to
train FairAgent and all the baselines. The test set is then divided
into 5 sets to construct different test stages, each introducing a set
of new-items to reflect dynamic introduction of new-items. For all
datasets, we filter out users with fewer than 10 interactions.

BackboneModel. Following the settings of the existingworks [10,
23], we employ widely used models, including Matrix Factoriza-
tion (MF) [22], the graph-based recommendation algorithm Light-
GCN [11], and the cold-start recommendation algorithm ALDI [12],
as backbone models to validate the effectiveness of FairAgent.
Noted that both MF and LightGCN rely solely on user-item interac-
tion data, while ALDI requires content information to recommend
new-items. For fair comparison, we utilize additional content infor-
mation only when ALDI was used as the backbone model for all the
baseline methods. We constructed the content information using a
pre-trained language model [21], extracting features from the titles
and categories of short videos (for KuaiRec-Small and KuaiRec-
Large), as well as the names and labels of games (for Steam).

Comparison Baselines. To the best of our knowledge, this is
the first work to address new-item fairness in DRSs. We opted to
adapt methods designed to enhance item fairness in static scenarios
as baselines for comparison. PD [37] employs causal intervention to
adjust the final prediction scores based on the amount of each item’s
interactions, thereby balancing the overall recommendation rate.
Pearson [42] introduces a regularization term that incorporates
the correlation between prediction scores and item popularity to
enhance item fairness during training. These baselines primarily
focus on increasing the recommendation exposure of items with
limited interactions, where here new-items are considered as those
with no interaction. CNIF [10] is the first work that explicitly
considers the time at which an item enters a system, and introduces
a time-based fairness loss function to optimize new-item fairness
during training. The parameters of these baselines were tuned based
on the configurations in the existing work [10].

Implementation Details.We follow the training protocol from
the Open-Source Library [26] to train all backbone models with
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Figure 5: Dynamic changes in HR and TGF metrics across 5

test stages for different methods using the ALDI backbone.

BPR loss. Then we employ Bayesian optimization to tune the rel-
evant hyper-parameters, including learning rate, regularization
coefficient, and embedding dimension. For fair comparison, all ex-
periments use a batch size of 8, 192 and a negative sampling rate of
4 for training. For the parameters mentioned in Section 5.2.3, we
tune 𝛼 within [0.5, 2.5], 𝛽 within [0, 1], and set 𝛾 = 0.1.

Evaluation and Metrics. Following the setting of [15, 26], at
each test stage, we sample negative items for users to construct a
fixed-length candidate set of 1000 items for evaluation. To measure
recommendation accuracy, we adopt Hit Rate (HR) [26, 34] and
NDCG [5, 13], with larger values indicating better performance. We
also report TGF (introduced in [10]) at all stages, to evaluate overall
new-item fairness (considering all the users), with larger values
denoting more unfair exposure distribution against new-items. Fur-
thermore, we use New-item Coverage (NC) to represent the ratio
of new-items in recommendation lists for all users and a trade-off
metric 𝛿𝑇 to quantify the balance between fairness improvement
and any potential loss in recommendation accuracy following the
work [10]. A higher 𝛿𝑇 indicates more fairness enhancement and
less accuracy loss. Due to page limitations, we report results for
all the metrics with 𝐾 = 20. Note that similar conclusions can be
drawn for other 𝐾 values.

6.1 Experimental Results and Analysis

6.1.1 Results of RQ1. We present how recommendation accuracy
and new-item fairness of different methods change along with
five stages, across different datasets in a dynamic recommendation
scenario. Fig 4 and Fig 5 present the results with MF and ALDI as
the backbone model respectively3, with sub-figures in a column
representing the results under a dataset (3 in total in each figure). In
both the figures, the first row represents recommendation accuracy
(𝐻𝑅, the higher the better), while the second row represents the
degree of unfairness on new-item exposure (𝑇𝐺𝐹 , the closer to
0 the better). We also present some quantitative results obtained
in the same experiments in Tab 1, where each value represents
the average performance of the corresponding method across the
five test stages, providing a measure of its overall effectiveness
in DRS settings. Bold values indicate the highest in each column,
while underlined values represent the second highest. We make the
following observations.

3The trend for LightGCN is similar to MF and is omitted here due to space constraints.
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Table 1: Average results across all test stages for different methods on three backbone models.

Method MF LightGCN ALDI

K=20 HR↑ NDCG↑ TGF↓ UNF↓ NC↑ %𝛿𝑇 ↑ HR↑ NDCG↑ TGF↓ UNF↓ NC↑ %𝛿𝑇 ↑ HR↑ NDCG↑ TGF↓ UNF↓ NC↑ %𝛿𝑇 ↑

KuaiRec-Small

Backbone 0.6035 0.2741 0.5949 0.1252 0.0000 - 0.6379 0.2972 0.5694 0.1156 0.0000 - 0.8593 0.4269 0.2448 0.0385 0.0183 -
PD 0.6154 0.2781 0.5729 0.1195 0.0000 102.9% 0.4749 0.2142 0.6717 0.1425 0.0000 80.8% 0.8163 0.4040 0.3711 0.0691 0.0000 72.9%

Pearson 0.5729 0.2584 0.5667 0.1170 0.0000 99.8% 0.4736 0.2132 0.6741 0.1432 0.0000 80.5% 0.8845 0.4558 0.2564 0.0420 0.0036 99.1%
CNIF 0.6957 0.3211 0.4552 0.0903 0.0000 120.9% 0.4770 0.2302 0.6458 0.1419 0.0000 82.9% 0.8883 0.4538 0.2286 0.0357 0.0054 105.1%

FairAgent 0.9600 0.5082 0.0793 0.0061 0.3003 197.5% 0.9413 0.5025 0.0866 0.0124 0.3306 182.7% 0.9591 0.5540 -0.0304 0.0096 0.3097 160.3%

KuaiRec-Large

Backbone 0.7241 0.4021 0.5732 0.1033 0.0000 - 0.7120 0.3900 0.5834 0.1020 0.0000 - 0.6956 0.3382 0.4679 0.0762 0.0062 -
PD 0.6478 0.3388 0.5917 0.1062 0.0000 93.5% 0.5648 0.2644 0.7003 0.1241 0.0000 81.6% 0.6114 0.2961 0.6017 0.0994 0.0000 80.9%

Pearson 0.6041 0.3079 0.5945 0.1054 0.0000 90.7% 0.5642 0.2630 0.7043 0.1249 0.0000 81.3% 0.6515 0.3129 0.5334 0.0812 0.0000 90.2%
CNIF 0.6638 0.3477 0.4789 0.0836 0.0000 103.9% 0.5588 0.2890 0.6480 0.1231 0.0000 85.3% 0.6877 0.3408 0.4232 0.0692 0.0000 104.2%

FairAgent 0.8252 0.4280 -0.0547 0.0224 0.3440 161.1% 0.8445 0.4609 -0.0377 0.0251 0.3168 163.9% 0.7365 0.3530 0.0184 0.0277 0.2708 149.0%

Steam

Backbone 0.5328 0.2882 0.7401 0.0669 0.0000 - 0.5258 0.2835 0.7278 0.0621 0.0000 - 0.5049 0.2518 0.6540 0.0454 0.0788 -
PD 0.4966 0.2441 0.7431 0.0652 0.0000 96.5% 0.4884 0.2511 0.7666 0.0673 0.0000 94.0% 0.4140 0.1914 0.6334 0.0400 0.0009 93.2%

Pearson 0.4929 0.2385 0.7471 0.0657 0.0000 95.9% 0.4905 0.2528 0.7686 0.0676 0.0000 94.0% 0.3719 0.1545 0.5178 0.0339 0.0374 97.6%
CNIF 0.3485 0.1713 0.5537 0.0453 0.0000 96.1% 0.5137 0.2762 0.7095 0.0608 0.0000 100.1% 0.4031 0.2071 0.4658 0.0453 0.0528 103.9%

FairAgent 0.5143 0.2674 0.4584 0.0325 0.1348 116.8% 0.4458 0.2129 0.3905 0.0370 0.1597 114.1% 0.4602 0.2151 0.3794 0.0321 0.1391 115.6%

First, FairAgent can be effectively applied to different types of

recommendation backbone models to increase exposure rate of new-

items. From the analysis of NC (new-item coverage) metric (Tab 1),
we found that with all backbones, the existing methods fail to im-
prove the exposure rate of new-items (NC persistently remains
near 0). These results highlight their inability to handle the contin-
uous introduction of new-items in DRSs. In contrast, FairAgent
consistently achieves significant improvements in NC across all
the backbone models and datasets (with NC approaching 30% on
KuaiRec-Small and KuaiRec-Large, and exceeding 13% on Steam).
This demonstrates its robust ability to enhance new-item exposure
and effectively tackle the challenge of continuously introducing
new-items in DRSs.

Second, FairAgent is the most effective in improving the exposure

fairness of new-items against old-items. It almost always achieves the

lowest values of TGF under different backbone models and datasets,
while the other baselines typically show much higher TGF values
(more serious unfairness), as observed from Fig 4, Fig 5 and Tab 1.
A TGF value closer to 0 indicates smaller exposure disparities be-
tween new and old items, reflecting greater fairness in the DRS. For
KuaiRec-Small and KuaiRec-Large, FairAgent effectively captures
users’ strong preferences for new-items, significantly improving
fairness. Specifically, its TGF values reaches close to 0, and decrease
by an average of 86.34% and 93.35% compared to all the backbone
models on the two datasets, respectively. In contrast, the best base-
line, CNIF, only achieves an decremental of 5.56% and 4.98%. For
Steam, FairAgent adopts a more balanced fairness optimization
strategy to aligning with users’ weaker preferences for new-items.
Under this condition, TGF still improves by an average of 42.13%
compared to the backbone models, outperforming CNIF’s 18.83%
improvement.

Third, FairAgent maintains the highest recommendation accu-

racy in most of the cases, highlighting its ability in well balancing

new-item fairness with accuracy in DRSs. Specifically, for KuaiRec-
Small, FairAgentmaintains the highest recommendation accuracy
across all the test stages, accurately recommending preferred new-
items for users in dynamic recommendation. Compared to all the
backbone models, the HR and NDCG metrics got improved by an
average of 39.41% and 61.42%, respectively. In contrast, to achieve

fairness, the best baseline CNIF sacrifices 2.19% in HR. For KuaiRec-
Large, a similar pattern can be observed. Compared to the backbone
models, FairAgent achieves an improvement of 12.82% in HR and
9.66% in NDCG on average, while the best baseline suffers the losses
of 10.33% and 12.88%, respectively. In Steam-like scenarios, where
users have weaker interest in new-items, improving fairness often
reduces recommendation accuracy by limiting old-item exposure.
This especially requires balancing well fairness and accuracy, as
neither severe unfairness nor low accuracy suits practical needs.
We use 𝛿𝑇 metric to evaluate how well different methods balances
these two. The results shows thatFairAgent achieves the best bal-
ance in all the scenarios, enhancing fairness with minimal loss in

accuracy, thus maintaining long-term stability of a system.

The analysis of the dataset and backbone model reveals several
key insights. First, datasets where new-items and user preference
evolve more rapidly seem to be more challenging. For instance,
the accuracy and fairness of the backbone models decrease rela-
tively more sharply with KuaiRec-Small, where user interest tend to
quickly shift towards the numerous new-items entering overtime.
This confirms our concern raised in Section 4 that if unfairness is
not addressed promptly, it may quickly accumulate in the dynamic
feedback of DRSs, leading to reduced exposure of new-items and
a sharp decline in recommendation accuracy. And for the fairness
enhancement methods, it seems more difficult to keep up with
the dynamics in KuaiRec-Small. For KuaiRec-Large and especially
Steam, where the expansion of new-item set and also shift of user
interest happen more slowly, the backbone models perform slightly
better and more stably. The same goes for the baseline fairness
methods. Second, despite being a cold-start model, ALDI does not
consistently enhance the new-item exposure and fairness as ex-
pected. Third, TGF of FairAgent has negative values sometimes,
meaning the reversal of exposure resources. This improves the
chances of users encountering new-items. And its degree can be
controlled to near zero through the use of adaptable parameters in
the reward function.

In summary, we answer RQ1: FairAgent most effectively im-

proves new-item exposure and enhances the fairness between

new and old items, while maintaining high recommendation

accuracy in DRSs.



Enhancing New-item Fairness in Dynamic Recommender Systems SIGIR ’25, July 13–18, 2025, Padua, Italy

0.5 0.0 0.5
TGF

1

2

3

4

5

Te
st

 S
ta

ge

KuaiRec-Small

1.0 0.5 0.0 0.5 1.0
TGF

KuaiRec-Big

1.0 0.5 0.0 0.5 1.0
TGF

Steam

Ground truth CNIF FairAgent

Figure 6: Performance of FairAgent and the best baseline

in adapting to users’ true preferences for new-items across

different recommendation stages.

6.1.2 Results of RQ2. Tab 1 presents the average UNF (user-level
new-item fairness) values across the five test stages, with smaller
values indicating that the recommendations better adapting to the
dynamic changes in users’ personalized preferences for new-items.
The results show that FairAgent consistently achieves the best
UNF in all the scenarios. To illustrate this more intuitively, we
visualize the phenomenon in Fig 6. Each point in the blue area
represents a user’s true preference for new-items at a specific rec-
ommendation stage, with the value calculated using the TGF metric
based on ground-truth interactions. The orange and green areas
represent the recommendation results of CNIF4, and FairAgent,
respectively, with values calculated using the TGF metric based
on their respective recommendation lists. When the distribution
along the x-axis closely matches the blue region (with bars of equal
length) in the same test stage, it signifies that the recommendation
results better align with the user’s dynamic fairness requirements.

From the results on KuaiRec-Small, we observe that most users’
preferences shift with the introduction of new-items (TGF shifts
from near zero to negative), and FairAgent effectively tracks these
changes (green areas closely follow the movement of blue areas).
This shows that FairAgent captures the dynamic evolution of
users’ personalized preferences for new-items and adjusts its fair-
ness strategies accordingly. In contrast, CNIF fails to do so, leading
to significant mismatches between recommendations and users’
actual preferences. On KuaiRec-Large, users show diverse prefer-
ences for new-items, with some favoring them (TGF < 0) and others
preferring older ones (TGF > 0). FairAgent adapts to this diversity
by tailoring fairness strategies to individual users, demonstrating
its ability to achieve new-item fairness at the user level in DRSs. In
the Steam scenario, most users prefer older items (TGF > 0), and
FairAgent successfully captures this. It adopts a milder fairness
strategy that not only improves new-item fairness but also respects
users’ preferences for older items, striking an effective balance
between accuracy and fairness.

In summary, we answer RQ2: FairAgent can effectively adapt

to users’ personalized dynamic changes in preferences for old

and new items within DRSs by flexibly tailoring its optimiza-

tion strategies.

6.1.3 Results on RQ3. To analyze the roles of different reward com-
ponents, we conducted ablation studies. As similar conclusions
were drawn across three backbone models, we present only the MF
4CNIF is the best performed baseline for improving new-item fairness, so we choose it
for comparison. Since the conclusions are similar across different backbone models,
we present the results for MF only due to space constraints.

Table 2: Results of ablation study on three datasets.

Method

Dataset - KuaiRec-Small

HR↑ NDCG↑ TGF↓ UNF↓ NC↑
FairAgent 0.9600 0.5082 0.0793 0.0061 0.3003

FairAgent𝑤/𝑜 𝑓 0.9340 0.4617 0.1985 0.0576 0.1945
FairAgent𝑤/𝑜 𝑛 0.9315 0.4605 0.1824 0.0370 0.1699

FairAgent𝑤/𝑜 𝑓 &𝑛 0.7946 0.3461 0.4649 0.0410 0.0450

Dataset - KuaiRec-Large

FairAgent 0.8445 0.4609 -0.0377 0.0251 0.3168
FairAgent𝑤/𝑜 𝑓 0.8686 0.4897 0.0786 0.0312 0.3562

FairAgent𝑤/𝑜 𝑛 0.8311 0.4537 -0.0685 0.0270 0.2704
FairAgent𝑤/𝑜 𝑓 &𝑛 0.7574 0.4052 0.3161 0.0513 0.1343

Dataset - Steam

FairAgent 0.4477 0.2369 0.4438 0.0250 0.1733
FairAgent𝑤/𝑜 𝑓 0.4055 0.1768 0.4584 0.0396 0.1918

FairAgent𝑤/𝑜 𝑛 0.5143 0.2674 0.4051 0.0325 0.1348
FairAgent𝑤/𝑜 𝑓 &𝑛 0.5028 0.2593 0.5401 0.0425 0.0938

results in Tab 2. Specifically, FairAgent𝑤/𝑜 𝑓 removes the fairness
reward 𝑅𝑓 𝑎𝑖𝑟 (let 𝛼 = 0), FairAgent𝑤/𝑜 𝑛 removes the new-item
exploration reward 𝑅𝑛𝑒𝑤 (let 𝛽 = 0), and FairAgent𝑤/𝑜 𝑓 &𝑛 re-
moves both (let 𝛼 = 0, 𝛽 = 0). We observe that removing 𝑅𝑓 𝑎𝑖𝑟 leads
to poorer fairness performance, as indicated by increased |TGF|
and UNF values. This validates the effectiveness of the fairness
reward in improving new-item fairness in DRSs by considering
users’ personalized preferences for new-items. Similarly, removing
𝑅𝑛𝑒𝑤 results in a significant drop in new-item recommendation
rates, as reflected by the reduced NC values. This demonstrates the
effectiveness of 𝑅𝑛𝑒𝑤 in enhancing the exposure of dynamically
introduced new-items. In scenarios where users prefer new-items
(e.g., KuaiRec-Small), 𝑅𝑓 𝑎𝑖𝑟 and 𝑅𝑛𝑒𝑤 can work synergistically to
both ensure new-item fairness and significantly enhance recom-
mendation accuracy.

In summary, we answer RQ3: Our designed fairness reward

and new-item exploration reward effectively enhance new-item

fairness and increase new-item recommendation rates.

7 Conclusion and Discussion

In this work, we proposed FairAgent, a RL-based new-item fair-
ness enhancement framework, designed to effectively boost new-
item exposure, keep up with users’ personalized preferences for
new-items, and meanwhile maintain high recommendation accu-
racy within DRSs.

While FairAgent shows promising performance, several di-
rections remain for future improvement. First, its reliance on a
backbone model may constrain performance due to the model’s in-
herent limitations, whereas RL-based approaches often suffer from
slow convergence and poor scalability. Enhancing computational
efficiency would also improve applicability in large-scale settings.
Finally, extending fairness considerations to other stakeholders,
such as content creators and platform providers, could lead to more
comprehensive and equitable DRSs.
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